def auto_load_model()

in beit_finetuning/utils.py [0:0]


def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
    output_dir = Path(args.output_dir)
    if loss_scaler is not None:
        # torch.amp
        if args.auto_resume and len(args.resume) == 0:
            import glob
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                t = ckpt.split('-')[-1].split('.')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
            print("Auto resume checkpoint: %s" % args.resume)

        if args.resume:
            if args.resume.startswith('https'):
                checkpoint = torch.hub.load_state_dict_from_url(
                    args.resume, map_location='cpu', check_hash=True)
            else:
                checkpoint = torch.load(args.resume, map_location='cpu')
            model_without_ddp.load_state_dict(checkpoint['model'])
            print("Resume checkpoint %s" % args.resume)
            if 'optimizer' in checkpoint and 'epoch' in checkpoint:
                optimizer.load_state_dict(checkpoint['optimizer'])
                args.start_epoch = checkpoint['epoch'] + 1
                if hasattr(args, 'model_ema') and args.model_ema:
                    _load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
                if 'scaler' in checkpoint:
                    loss_scaler.load_state_dict(checkpoint['scaler'])
                print("With optim & sched!")
    else:
        # deepspeed, only support '--auto_resume'.
        if args.auto_resume:
            import glob
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                t = ckpt.split('-')[-1].split('.')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
                print("Auto resume checkpoint: %d" % latest_ckpt)
                _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
                args.start_epoch = client_states['epoch'] + 1
                if model_ema is not None:
                    if args.model_ema:
                        _load_checkpoint_for_ema(model_ema, client_states['model_ema'])