in models/regnet.py [0:0]
def get_expanded_params(self):
"""Programatically compute all the per-block settings,
given the RegNet parameters.
The first step is to compute the quantized linear block parameters,
in log space. Key parameters are:
- `w_a` is the width progression slope
- `w_0` is the initial width
- `w_m` is the width stepping in the log space
In other terms
`log(block_width) = log(w_0) + w_m * block_capacity`,
with `bock_capacity` ramping up following the w_0 and w_a params.
This block width is finally quantized to multiples of 8.
The second step is to compute the parameters per stage,
taking into account the skip connection and the final 1x1 convolutions.
We use the fact that the output width is constant within a stage
"""
QUANT = 8
STRIDE = 2
# Compute the block widths. Each stage has one unique block width
widths_cont = np.arange(self.depth) * self.w_a + self.w_0
block_capacity = np.round(np.log(widths_cont / self.w_0) / np.log(self.w_m))
block_widths = (
np.round(np.divide(self.w_0 * np.power(self.w_m, block_capacity), QUANT))
* QUANT
)
num_stages = len(np.unique(block_widths))
block_widths = block_widths.astype(int).tolist()
# Convert to per stage parameters
split_helper = zip(
block_widths + [0],
[0] + block_widths,
block_widths + [0],
[0] + block_widths,
)
splits = [w != wp or r != rp for w, wp, r, rp in split_helper]
stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t]
stage_depths = np.diff([d for d, t in enumerate(splits) if t]).tolist()
strides = [STRIDE] * num_stages
bottleneck_multipliers = [self.bottleneck_multiplier] * num_stages
group_widths = [self.group_width] * num_stages
# Adjust the compatibility of stage widths and group widths
stage_widths, group_widths = _adjust_widths_groups_compatibilty(
stage_widths, bottleneck_multipliers, group_widths
)
return zip(
stage_widths, strides, stage_depths, group_widths, bottleneck_multipliers
)