def init_weights()

in models/regnet.py [0:0]


    def init_weights(self):
        # Performs ResNet-style weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # Note that there is no bias due to BN
                fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(mean=0.0, std=math.sqrt(2.0 / fan_out))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1.0)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(mean=0.0, std=0.01)
                m.bias.data.zero_()