in senteval/sick.py [0:0]
def run(self, params, batcher):
sick_embed = {'train': {}, 'dev': {}, 'test': {}}
bsize = params.batch_size
for key in self.sick_data:
logging.info('Computing embedding for {0}'.format(key))
# Sort to reduce padding
sorted_corpus = sorted(zip(self.sick_data[key]['X_A'],
self.sick_data[key]['X_B'],
self.sick_data[key]['y']),
key=lambda z: (len(z[0]), len(z[1]), z[2]))
self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus]
self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus]
self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus]
for txt_type in ['X_A', 'X_B']:
sick_embed[key][txt_type] = []
for ii in range(0, len(self.sick_data[key]['y']), bsize):
batch = self.sick_data[key][txt_type][ii:ii + bsize]
embeddings = batcher(params, batch)
sick_embed[key][txt_type].append(embeddings)
sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type])
sick_embed[key]['y'] = np.array(self.sick_data[key]['y'])
logging.info('Computed {0} embeddings'.format(key))
# Train
trainA = sick_embed['train']['X_A']
trainB = sick_embed['train']['X_B']
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
trainY = self.encode_labels(self.sick_data['train']['y'])
# Dev
devA = sick_embed['dev']['X_A']
devB = sick_embed['dev']['X_B']
devF = np.c_[np.abs(devA - devB), devA * devB]
devY = self.encode_labels(self.sick_data['dev']['y'])
# Test
testA = sick_embed['test']['X_A']
testB = sick_embed['test']['X_B']
testF = np.c_[np.abs(testA - testB), testA * testB]
testY = self.encode_labels(self.sick_data['test']['y'])
config = {'seed': self.seed, 'nclasses': 5}
clf = RelatednessPytorch(train={'X': trainF, 'y': trainY},
valid={'X': devF, 'y': devY},
test={'X': testF, 'y': testY},
devscores=self.sick_data['dev']['y'],
config=config)
devpr, yhat = clf.run()
pr = pearsonr(yhat, self.sick_data['test']['y'])[0]
sr = spearmanr(yhat, self.sick_data['test']['y'])[0]
pr = 0 if pr != pr else pr
sr = 0 if sr != sr else sr
se = mean_squared_error(yhat, self.sick_data['test']['y'])
logging.debug('Dev : Pearson {0}'.format(devpr))
logging.debug('Test : Pearson {0} Spearman {1} MSE {2} \
for SICK Relatedness\n'.format(pr, sr, se))
return {'devpearson': devpr, 'pearson': pr, 'spearman': sr, 'mse': se,
'yhat': yhat, 'ndev': len(devA), 'ntest': len(testA)}