in senteval/mrpc.py [0:0]
def run(self, params, batcher):
mrpc_embed = {'train': {}, 'test': {}}
for key in self.mrpc_data:
logging.info('Computing embedding for {0}'.format(key))
# Sort to reduce padding
text_data = {}
sorted_corpus = sorted(zip(self.mrpc_data[key]['X_A'],
self.mrpc_data[key]['X_B'],
self.mrpc_data[key]['y']),
key=lambda z: (len(z[0]), len(z[1]), z[2]))
text_data['A'] = [x for (x, y, z) in sorted_corpus]
text_data['B'] = [y for (x, y, z) in sorted_corpus]
text_data['y'] = [z for (x, y, z) in sorted_corpus]
for txt_type in ['A', 'B']:
mrpc_embed[key][txt_type] = []
for ii in range(0, len(text_data['y']), params.batch_size):
batch = text_data[txt_type][ii:ii + params.batch_size]
embeddings = batcher(params, batch)
mrpc_embed[key][txt_type].append(embeddings)
mrpc_embed[key][txt_type] = np.vstack(mrpc_embed[key][txt_type])
mrpc_embed[key]['y'] = np.array(text_data['y'])
logging.info('Computed {0} embeddings'.format(key))
# Train
trainA = mrpc_embed['train']['A']
trainB = mrpc_embed['train']['B']
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
trainY = mrpc_embed['train']['y']
# Test
testA = mrpc_embed['test']['A']
testB = mrpc_embed['test']['B']
testF = np.c_[np.abs(testA - testB), testA * testB]
testY = mrpc_embed['test']['y']
config = {'nclasses': 2, 'seed': self.seed,
'usepytorch': params.usepytorch,
'classifier': params.classifier,
'nhid': params.nhid, 'kfold': params.kfold}
clf = KFoldClassifier(train={'X': trainF, 'y': trainY},
test={'X': testF, 'y': testY}, config=config)
devacc, testacc, yhat = clf.run()
testf1 = round(100*f1_score(testY, yhat), 2)
logging.debug('Dev acc : {0} Test acc {1}; Test F1 {2} for MRPC.\n'
.format(devacc, testacc, testf1))
return {'devacc': devacc, 'acc': testacc, 'f1': testf1,
'ndev': len(trainA), 'ntest': len(testA)}