def __init__()

in slowfast/models/video_model_builder.py [0:0]


    def __init__(self, cfg):
        super().__init__()
        # Get parameters.
        assert cfg.DATA.TRAIN_CROP_SIZE == cfg.DATA.TEST_CROP_SIZE
        self.cfg = cfg
        pool_first = cfg.MVIT.POOL_FIRST
        # Prepare input.
        spatial_size = cfg.DATA.TRAIN_CROP_SIZE
        temporal_size = cfg.DATA.NUM_FRAMES
        in_chans = cfg.DATA.INPUT_CHANNEL_NUM[0]
        use_2d_patch = cfg.MVIT.PATCH_2D
        self.patch_stride = cfg.MVIT.PATCH_STRIDE
        if use_2d_patch:
            self.patch_stride = [1] + self.patch_stride
        # Prepare output.
        num_classes = cfg.MODEL.NUM_CLASSES
        embed_dim = cfg.MVIT.EMBED_DIM
        # Prepare backbone
        num_heads = cfg.MVIT.NUM_HEADS
        mlp_ratio = cfg.MVIT.MLP_RATIO
        qkv_bias = cfg.MVIT.QKV_BIAS
        self.drop_rate = cfg.MVIT.DROPOUT_RATE
        depth = cfg.MVIT.DEPTH
        drop_path_rate = cfg.MVIT.DROPPATH_RATE
        mode = cfg.MVIT.MODE
        self.cls_embed_on = cfg.MVIT.CLS_EMBED_ON
        self.sep_pos_embed = cfg.MVIT.SEP_POS_EMBED
        if cfg.MVIT.NORM == "layernorm":
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        else:
            raise NotImplementedError("Only supports layernorm.")
        self.num_classes = num_classes
        self.patch_embed = stem_helper.PatchEmbed(
            dim_in=in_chans,
            dim_out=embed_dim,
            kernel=cfg.MVIT.PATCH_KERNEL,
            stride=cfg.MVIT.PATCH_STRIDE,
            padding=cfg.MVIT.PATCH_PADDING,
            conv_2d=use_2d_patch,
        )
        self.input_dims = [temporal_size, spatial_size, spatial_size]
        assert self.input_dims[1] == self.input_dims[2]
        self.patch_dims = [
            self.input_dims[i] // self.patch_stride[i]
            for i in range(len(self.input_dims))
        ]
        num_patches = math.prod(self.patch_dims)

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule

        if self.cls_embed_on:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
            pos_embed_dim = num_patches + 1
        else:
            pos_embed_dim = num_patches

        if self.sep_pos_embed:
            self.pos_embed_spatial = nn.Parameter(
                torch.zeros(
                    1, self.patch_dims[1] * self.patch_dims[2], embed_dim
                )
            )
            self.pos_embed_temporal = nn.Parameter(
                torch.zeros(1, self.patch_dims[0], embed_dim)
            )
            if self.cls_embed_on:
                self.pos_embed_class = nn.Parameter(
                    torch.zeros(1, 1, embed_dim)
                )
        else:
            self.pos_embed = nn.Parameter(
                torch.zeros(1, pos_embed_dim, embed_dim)
            )

        if self.drop_rate > 0.0:
            self.pos_drop = nn.Dropout(p=self.drop_rate)

        dim_mul, head_mul = torch.ones(depth + 1), torch.ones(depth + 1)
        for i in range(len(cfg.MVIT.DIM_MUL)):
            dim_mul[cfg.MVIT.DIM_MUL[i][0]] = cfg.MVIT.DIM_MUL[i][1]
        for i in range(len(cfg.MVIT.HEAD_MUL)):
            head_mul[cfg.MVIT.HEAD_MUL[i][0]] = cfg.MVIT.HEAD_MUL[i][1]

        pool_q = [[] for i in range(cfg.MVIT.DEPTH)]
        pool_kv = [[] for i in range(cfg.MVIT.DEPTH)]
        stride_q = [[] for i in range(cfg.MVIT.DEPTH)]
        stride_kv = [[] for i in range(cfg.MVIT.DEPTH)]

        for i in range(len(cfg.MVIT.POOL_Q_STRIDE)):
            stride_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = cfg.MVIT.POOL_Q_STRIDE[i][
                1:
            ]
            if cfg.MVIT.POOL_KVQ_KERNEL is not None:
                pool_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = cfg.MVIT.POOL_KVQ_KERNEL
            else:
                pool_q[cfg.MVIT.POOL_Q_STRIDE[i][0]] = [
                    s + 1 if s > 1 else s for s in cfg.MVIT.POOL_Q_STRIDE[i][1:]
                ]

        # If POOL_KV_STRIDE_ADAPTIVE is not None, initialize POOL_KV_STRIDE.
        if cfg.MVIT.POOL_KV_STRIDE_ADAPTIVE is not None:
            _stride_kv = cfg.MVIT.POOL_KV_STRIDE_ADAPTIVE
            cfg.MVIT.POOL_KV_STRIDE = []
            for i in range(cfg.MVIT.DEPTH):
                if len(stride_q[i]) > 0:
                    _stride_kv = [
                        max(_stride_kv[d] // stride_q[i][d], 1)
                        for d in range(len(_stride_kv))
                    ]
                cfg.MVIT.POOL_KV_STRIDE.append([i] + _stride_kv)

        for i in range(len(cfg.MVIT.POOL_KV_STRIDE)):
            stride_kv[cfg.MVIT.POOL_KV_STRIDE[i][0]] = cfg.MVIT.POOL_KV_STRIDE[
                i
            ][1:]
            if cfg.MVIT.POOL_KVQ_KERNEL is not None:
                pool_kv[
                    cfg.MVIT.POOL_KV_STRIDE[i][0]
                ] = cfg.MVIT.POOL_KVQ_KERNEL
            else:
                pool_kv[cfg.MVIT.POOL_KV_STRIDE[i][0]] = [
                    s + 1 if s > 1 else s
                    for s in cfg.MVIT.POOL_KV_STRIDE[i][1:]
                ]

        self.norm_stem = norm_layer(embed_dim) if cfg.MVIT.NORM_STEM else None

        self.blocks = nn.ModuleList()

        if cfg.MODEL.ACT_CHECKPOINT:
            validate_checkpoint_wrapper_import(checkpoint_wrapper)

        for i in range(depth):
            num_heads = round_width(num_heads, head_mul[i])
            embed_dim = round_width(embed_dim, dim_mul[i], divisor=num_heads)
            dim_out = round_width(
                embed_dim,
                dim_mul[i + 1],
                divisor=round_width(num_heads, head_mul[i + 1]),
            )
            attention_block = MultiScaleBlock(
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop_rate=self.drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                kernel_q=pool_q[i] if len(pool_q) > i else [],
                kernel_kv=pool_kv[i] if len(pool_kv) > i else [],
                stride_q=stride_q[i] if len(stride_q) > i else [],
                stride_kv=stride_kv[i] if len(stride_kv) > i else [],
                mode=mode,
                has_cls_embed=self.cls_embed_on,
                pool_first=pool_first,
            )
            if cfg.MODEL.ACT_CHECKPOINT:
                attention_block = checkpoint_wrapper(attention_block)
            self.blocks.append(attention_block)

        embed_dim = dim_out
        self.norm = norm_layer(embed_dim)

        self.head = head_helper.TransformerBasicHead(
            embed_dim,
            num_classes,
            dropout_rate=cfg.MODEL.DROPOUT_RATE,
            act_func=cfg.MODEL.HEAD_ACT,
        )
        if self.sep_pos_embed:
            trunc_normal_(self.pos_embed_spatial, std=0.02)
            trunc_normal_(self.pos_embed_temporal, std=0.02)
            if self.cls_embed_on:
                trunc_normal_(self.pos_embed_class, std=0.02)
        else:
            trunc_normal_(self.pos_embed, std=0.02)
        if self.cls_embed_on:
            trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)