def convert_examples_to_features()

in code/run_glue.py [0:0]


def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer, output_mode):
    """Loads a data file into a list of `InputBatch`s."""

    if output_mode == 'classification':
        label_map = {label: i for i, label in enumerate(label_list)}

    features = []
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))

        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)

        if tokens_b:
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        if example.label is None:
            label_id = None
        else:
            if output_mode == "classification":
                label_id = label_map[example.label]
            elif output_mode == "regression":
                label_id = float(example.label)
            else:
                raise KeyError(output_mode)

        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
                    [str(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            if example.label is None:
                logger.info("label: <UNK>")
            else:
                logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
    return features