def forward()

in sparseconvnet/batchNormalization.py [0:0]


    def forward(
            ctx,
            input_features,
            weight,
            bias,
            running_mean,
            running_var,
            eps,
            momentum,
            train,
            leakiness):
        ctx.nPlanes = running_mean.shape[0]
        ctx.train = train
        ctx.leakiness = leakiness
        output_features = input_features.new()
        saveMean = input_features.new().resize_(ctx.nPlanes)
        saveInvStd = running_mean.clone().resize_(ctx.nPlanes)
        sparseconvnet.SCN.BatchNormalization_updateOutput(
            input_features,
            output_features,
            saveMean,
            saveInvStd,
            running_mean,
            running_var,
            weight,
            bias,
            eps,
            momentum,
            ctx.train,
            ctx.leakiness)
        ctx.save_for_backward(input_features,
                              output_features,
                              weight,
                              bias,
                              running_mean,
                              running_var,
                              saveMean,
                              saveInvStd)
        return output_features