def renyi_dp()

in submix.py [0:0]


    def renyi_dp(self, p ,q, alpha=float('inf')):
        if alpha == float('inf'):
            RD = torch.log(torch.max(p/q))
        elif alpha == 1:
            RD = torch.sum(p*torch.log(p/q))
        else:
            RD = 1/(alpha-1)*torch.log(
                torch.sum((p**alpha)/(q**(alpha-1))))
        if torch.isnan(RD):
            RD = torch.log(torch.max(p/q))
        return RD