def _tensorloading()

in preprocess-bigpatent.py [0:0]


def _tensorloading(dset):
    tensors = []
    for i,t_path in enumerate(glob.glob(f'bigpatent-{dset}-*.pt')):
        tensors.append(torch.load(t_path))
        if (i+1) % 1000 == 0:
            print(f'Procssed {dset} tensor file # {i+1}...')
    return torch.cat(tensors)