utils/generate_vanilla_tabert_training_data.py [82:91]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    for example_idx in tqdm(indices, desc=f"Generating dataset {epoch_file}", file=sys.stdout):
        example = table_db[example_idx]
        try:
            instances = input_formatter.get_pretraining_instances_from_example(example, sample_context)

            for instance in instances:
                if debug_file and random() <= 0.05:
                    f_dbg.write(json.dumps(instance) + os.linesep)

                input_formatter.remove_unecessary_instance_entries(instance)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



utils/generate_vertical_tabert_training_data.py [132:141]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    for example_idx in tqdm(indices, desc=f"Generating dataset {epoch_file}", file=sys.stdout):
        example = table_db[example_idx]
        try:
            instances = input_formatter.get_pretraining_instances_from_example(example, sample_context)

            for instance in instances:
                if debug_file and random() <= 0.05:
                    f_dbg.write(json.dumps(instance) + os.linesep)

                input_formatter.remove_unecessary_instance_entries(instance)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



