anli/src/nli/train_with_scramble.py [25:141]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Dataset,
    DataLoader,
    DistributedSampler,
    RandomSampler,
    SequentialSampler,
)
import config
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup
from flint.data_utils.batchbuilder import BaseBatchBuilder, move_to_device
from flint.data_utils.fields import RawFlintField, LabelFlintField, ArrayIndexFlintField
from utils import common, list_dict_data_tool, save_tool
import os
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.nn as nn
from torch.nn import functional as F

import random
import torch
from tqdm import tqdm
import math
import copy
import submitit
import datetime

import pprint

pp = pprint.PrettyPrinter(indent=2)

# from fairseq.data.data_utils import collate_tokens

MODEL_CLASSES = {
    "bert-base": {
        "model_name": "bert-base-uncased",
        "tokenizer": BertTokenizer,
        "sequence_classification": BertForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 0,
        "padding_att_value": 0,
        "do_lower_case": True,
    },
    "bert-large": {
        "model_name": "bert-large-uncased",
        "tokenizer": BertTokenizer,
        "sequence_classification": BertForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 0,
        "padding_att_value": 0,
        "do_lower_case": True,
    },
    "xlnet-base": {
        "model_name": "xlnet-base-cased",
        "tokenizer": XLNetTokenizer,
        "sequence_classification": XLNetForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 4,
        "padding_att_value": 0,
        "left_pad": True,
    },
    "xlnet-large": {
        "model_name": "xlnet-large-cased",
        "tokenizer": XLNetTokenizer,
        "sequence_classification": XLNetForSequenceClassification,
        "padding_segement_value": 4,
        "padding_att_value": 0,
        "left_pad": True,
    },
    "roberta-base": {
        "model_name": "roberta-base",
        "tokenizer": RobertaTokenizer,
        "sequence_classification": RobertaForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "roberta-large": {
        "model_name": "roberta-large",
        "tokenizer": RobertaTokenizer,
        "sequence_classification": RobertaForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "albert-xxlarge": {
        "model_name": "albert-xxlarge-v2",
        "tokenizer": AlbertTokenizer,
        "sequence_classification": AlbertForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "distilbert": {
        "model_name": "distilbert-base-cased",
        "tokenizer": DistilBertTokenizer,
        "sequence_classification": DistilBertForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "bart-large": {
        "model_name": "facebook/bart-large",
        "tokenizer": BartTokenizer,
        "sequence_classification": BartForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "electra-base": {
        "model_name": "google/electra-base-discriminator",
        "tokenizer": ElectraTokenizer,
        "sequence_classification": ElectraForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "electra-large": {
        "model_name": "google/electra-large-discriminator",
        "tokenizer": ElectraTokenizer,
        "sequence_classification": ElectraForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



anli/src/nli/training.py [27:142]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Dataset,
    DataLoader,
    DistributedSampler,
    RandomSampler,
    SequentialSampler,
)
import config
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup
from flint.data_utils.batchbuilder import BaseBatchBuilder, move_to_device
from flint.data_utils.fields import RawFlintField, LabelFlintField, ArrayIndexFlintField
from utils import common, list_dict_data_tool, save_tool
import os
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.nn as nn

import random
import torch
from tqdm import tqdm
import math
import copy
import submitit
import datetime

import pprint

pp = pprint.PrettyPrinter(indent=2)

# from fairseq.data.data_utils import collate_tokens

MODEL_CLASSES = {
    "bert-base": {
        "model_name": "bert-base-uncased",
        "tokenizer": BertTokenizer,
        "sequence_classification": BertForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 0,
        "padding_att_value": 0,
        "do_lower_case": True,
    },
    "bert-large": {
        "model_name": "bert-large-uncased",
        "tokenizer": BertTokenizer,
        "sequence_classification": BertForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 0,
        "padding_att_value": 0,
        "do_lower_case": True,
    },
    "xlnet-base": {
        "model_name": "xlnet-base-cased",
        "tokenizer": XLNetTokenizer,
        "sequence_classification": XLNetForSequenceClassification,
        # "padding_token_value": 0,
        "padding_segement_value": 4,
        "padding_att_value": 0,
        "left_pad": True,
    },
    "xlnet-large": {
        "model_name": "xlnet-large-cased",
        "tokenizer": XLNetTokenizer,
        "sequence_classification": XLNetForSequenceClassification,
        "padding_segement_value": 4,
        "padding_att_value": 0,
        "left_pad": True,
    },
    "roberta-base": {
        "model_name": "roberta-base",
        "tokenizer": RobertaTokenizer,
        "sequence_classification": RobertaForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "roberta-large": {
        "model_name": "roberta-large",
        "tokenizer": RobertaTokenizer,
        "sequence_classification": RobertaForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "albert-xxlarge": {
        "model_name": "albert-xxlarge-v2",
        "tokenizer": AlbertTokenizer,
        "sequence_classification": AlbertForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "distilbert": {
        "model_name": "distilbert-base-cased",
        "tokenizer": DistilBertTokenizer,
        "sequence_classification": DistilBertForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "bart-large": {
        "model_name": "facebook/bart-large",
        "tokenizer": BartTokenizer,
        "sequence_classification": BartForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "electra-base": {
        "model_name": "google/electra-base-discriminator",
        "tokenizer": ElectraTokenizer,
        "sequence_classification": ElectraForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
    "electra-large": {
        "model_name": "google/electra-large-discriminator",
        "tokenizer": ElectraTokenizer,
        "sequence_classification": ElectraForSequenceClassification,
        "padding_segement_value": 0,
        "padding_att_value": 0,
    },
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



