in anli/src/nli/evaluation.py [0:0]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true", help="If set, we only use CPU.")
parser.add_argument(
"--model_class_name",
type=str,
help="Set the model class of the experiment.",
required=True,
)
parser.add_argument(
"--model_checkpoint_path",
type=str,
help="Set the path to save the prediction.",
default="",
)
parser.add_argument(
"--output_prediction_path",
type=str,
default=None,
help="Set the path to save the prediction.",
)
parser.add_argument(
"--per_gpu_eval_batch_size",
default=16,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--max_length", default=156, type=int, help="Max length of the sequences."
)
parser.add_argument(
"--eval_data", type=str, help="The training data used in the experiments."
)
parser.add_argument("--train_data", type=str, help="snli")
parser.add_argument("--train_mode", type=str, help="orig")
parser.add_argument(
"--train_with_lm",
default=False,
action="store_true",
help="Train model with LM",
)
parser.add_argument(
"--flip_sent",
default=False,
action="store_true",
help="Flip the hypothesis and premise",
)
parser.add_argument("--slurm", default=False, action="store_true")
args = parser.parse_args()
return args