def _tokenize()

in pytorch-transformers/pytorch_transformers/tokenization_xlm.py [0:0]


    def _tokenize(self, text, lang='en', bypass_tokenizer=False):
        """
        Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizerself. Otherwise, we use Moses.

        Details of tokenization:
        - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`
        - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
            - Install with `pip install pythainlp`
        - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea)
            - Install with the following steps:
            ```
            git clone git@github.com:neubig/kytea.git && cd kytea
            autoreconf -i
            ./configure --prefix=$HOME/local
            make && make install
            pip install kytea
            ```
        - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer *
            - Install with `pip install jieba`

        \* The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip).
        However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated.
        Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine
        if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
        [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally,
        and set `bypass_tokenizer=True` to bypass the tokenizer.

        Args:
            - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it.
            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)  (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
        if lang and self.lang2id and lang not in self.lang2id:
            logger.error("Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model.")
        if bypass_tokenizer:
            text = text.split()
        elif lang not in self.lang_with_custom_tokenizer:
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
        elif lang == 'th':
            text = self.moses_pipeline(text, lang=lang)
            try:
                if 'pythainlp' not in sys.modules:
                    from pythainlp.tokenize import word_tokenize as th_word_tokenize
            except (AttributeError, ImportError) as e:
                logger.error("Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps")
                logger.error("1. pip install pythainlp")
                raise e
            text = th_word_tokenize(text)
        elif lang == 'zh':
            try:
                if 'jieba' not in sys.modules:
                    import jieba
            except (AttributeError, ImportError) as e:
                logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
                logger.error("1. pip install jieba")
                raise e
            text = ' '.join(jieba.cut(text))
            text = self.moses_pipeline(text, lang=lang)
            text = text.split()
        elif lang == 'ja':
            text = self.moses_pipeline(text, lang=lang)
            text = self.ja_tokenize(text)
        else:
            raise ValueError('It should not reach here')

        if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
            text = lowercase_and_remove_accent(text)

        split_tokens = []
        for token in text:
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])

        return split_tokens