GraphAutoEncoder/graphVAESSW.py [241:261]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.point_num = structure.point_num
        self.residual_rate = structure.residual_rate
        
        self.b_max_pool = structure.b_max_pool
        self.perpoint_bias = structure.perpoint_bias
        
        self.channel_lst = channel_lst           
        self.layer_num = len(structure.connection_info_lsts)
                
        self.layer_lst = nn.ModuleList([])
        

        b_Perpt_bias = self.perpoint_bias
        for l in np.arange(0,self.layer_num):
            in_channel = self.channel_lst[l]
            out_channel = self.channel_lst[l+1]
            connection_info  = structure.connection_info_lsts[l]

            in_point_num = structure.ptnum_list[l]
            
            self.layer_lst.append(LASMConvssw(in_channel, out_channel, weight_num,in_point_num,  connection_info, b_Perpt_bias, self.residual_rate))           
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



GraphAutoEncoder/graphVAESSW.py [300:320]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.point_num = structure.point_num
        self.residual_rate = structure.residual_rate
        
        self.b_max_pool = structure.b_max_pool
        self.perpoint_bias = structure.perpoint_bias
        
        self.channel_lst = channel_lst           
        self.layer_num = len(structure.connection_info_lsts)
        
        self.layer_lst = nn.ModuleList([])
        

        b_Perpt_bias = self.perpoint_bias
        for l in np.arange(0,self.layer_num):
            in_channel = self.channel_lst[l]
            out_channel = self.channel_lst[l+1]
            connection_info  = structure.connection_info_lsts[l]

            in_point_num = structure.ptnum_list[l]
            
            self.layer_lst.append(LASMConvssw(in_channel, out_channel, weight_num,in_point_num,  connection_info, b_Perpt_bias, self.residual_rate))           
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



