in pt/vmz/datasets/data.py [0:0]
def get_dataset(args, transform, split="train"):
metadata = None
if split == "val" or split == "validataion":
if args.val_file and os.path.isfile(args.val_file):
metadata = torch.load(args.val_file)
root = args.valdir
train = False
elif split == "train":
if args.train_file and os.path.isfile(args.train_file):
metadata = torch.load(args.train_file)
root = args.traindir
train = True
if args.dataset == "kinetics400":
_dataset = Kinetics(
root, args.num_frames, transform=transform, _precomputed_metadata=metadata
)
elif args.dataset == "ucf101":
_dataset = UCF(
root,
args.annotation_path,
frames_per_clip=args.num_frames,
train=train,
transform=transform,
fold=args.fold,
_precomputed_metadata=metadata,
)
_dataset.video_clips.compute_clips(args.num_frames, 1)
if args.train_file is None or not os.path.isfile(args.train_file):
utils.save_on_master(
_dataset.metadata,
"{}_{}_{}fms.pth".format(args.dataset, split, args.num_frames),
)
return _dataset