def __init__()

in common/humaneva_dataset.py [0:0]


    def __init__(self, path):
        super().__init__(fps=60, skeleton=humaneva_skeleton)
        
        self._cameras = copy.deepcopy(humaneva_cameras_extrinsic_params)
        for cameras in self._cameras.values():
            for i, cam in enumerate(cameras):
                cam.update(humaneva_cameras_intrinsic_params[i])
                for k, v in cam.items():
                    if k not in ['id', 'res_w', 'res_h']:
                        cam[k] = np.array(v, dtype='float32')
                if 'translation' in cam:
                    cam['translation'] = cam['translation']/1000 # mm to meters
                
        for subject in list(self._cameras.keys()):
            data = self._cameras[subject]
            del self._cameras[subject]
            for prefix in ['Train/', 'Validate/', 'Unlabeled/Train/', 'Unlabeled/Validate/', 'Unlabeled/']:
                self._cameras[prefix + subject] = data
        
        # Load serialized dataset
        data = np.load(path, allow_pickle=True)['positions_3d'].item()
        
        self._data = {}
        for subject, actions in data.items():
            self._data[subject] = {}
            for action_name, positions in actions.items():
                self._data[subject][action_name] = {
                    'positions': positions,
                    'cameras': self._cameras[subject],
                }