in common/humaneva_dataset.py [0:0]
def __init__(self, path):
super().__init__(fps=60, skeleton=humaneva_skeleton)
self._cameras = copy.deepcopy(humaneva_cameras_extrinsic_params)
for cameras in self._cameras.values():
for i, cam in enumerate(cameras):
cam.update(humaneva_cameras_intrinsic_params[i])
for k, v in cam.items():
if k not in ['id', 'res_w', 'res_h']:
cam[k] = np.array(v, dtype='float32')
if 'translation' in cam:
cam['translation'] = cam['translation']/1000 # mm to meters
for subject in list(self._cameras.keys()):
data = self._cameras[subject]
del self._cameras[subject]
for prefix in ['Train/', 'Validate/', 'Unlabeled/Train/', 'Unlabeled/Validate/', 'Unlabeled/']:
self._cameras[prefix + subject] = data
# Load serialized dataset
data = np.load(path, allow_pickle=True)['positions_3d'].item()
self._data = {}
for subject, actions in data.items():
self._data[subject] = {}
for action_name, positions in actions.items():
self._data[subject][action_name] = {
'positions': positions,
'cameras': self._cameras[subject],
}