def main()

in inference/infer_video.py [0:0]


def main(args):

    logger = logging.getLogger(__name__)
    merge_cfg_from_file(args.cfg)
    cfg.NUM_GPUS = 1
    args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE)
    assert_and_infer_cfg(cache_urls=False)
    model = infer_engine.initialize_model_from_cfg(args.weights)
    dummy_coco_dataset = dummy_datasets.get_coco_dataset()



    if os.path.isdir(args.im_or_folder):
        im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext)
    else:
        im_list = [args.im_or_folder]

    for video_name in im_list:
        out_name = os.path.join(
                args.output_dir, os.path.basename(video_name)
            )
        print('Processing {}'.format(video_name))

        boxes = []
        segments = []
        keypoints = []

        for frame_i, im in enumerate(read_video(video_name)):

            logger.info('Frame {}'.format(frame_i))
            timers = defaultdict(Timer)
            t = time.time()
            with c2_utils.NamedCudaScope(0):
                cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all(
                    model, im, None, timers=timers
                )
            logger.info('Inference time: {:.3f}s'.format(time.time() - t))
            for k, v in timers.items():
                logger.info(' | {}: {:.3f}s'.format(k, v.average_time))

            boxes.append(cls_boxes)
            segments.append(cls_segms)
            keypoints.append(cls_keyps)

        
        # Video resolution
        metadata = {
            'w': im.shape[1],
            'h': im.shape[0],
        }
        
        np.savez_compressed(out_name, boxes=boxes, segments=segments, keypoints=keypoints, metadata=metadata)