in wypr/utils/eval_prop.py [0:0]
def eval_prop_cls(pred, gt, ovthresh=0.25, get_iou_func=get_iou):
""" Generic functions to compute precision/recall for object detection
for a single class.
Input:
pred: map of {img_id: [(bbox, score)]} where bbox is numpy array
gt: map of {img_id: [bbox]}
ovthresh: scalar, iou threshold
Output:
rec: numpy array of length nd
ABO: Average Best Overlap (ABO)
"""
# construct gt objects
class_recs = {} # {img_id: {'bbox': bbox list, 'det': matched list, 'max_overlap': for MABO}}
npos = 0
for img_id in gt.keys():
bbox = np.array(gt[img_id])
det = [False] * len(bbox)
max_overlap = [0] * len(bbox)
npos += len(bbox)
class_recs[img_id] = {'bbox': bbox, 'det': det, 'max_overlap': max_overlap}
# pad empty list to all other imgids
for img_id in pred.keys():
if img_id not in gt:
class_recs[img_id] = {'bbox': np.array([]), 'det': [], 'max_overlap': []}
# construct dets
image_ids = []
BB = []
for img_id in pred.keys():
for box in pred[img_id]:
image_ids.append(img_id)
BB.append(box)
BB = np.array(BB) # (nd,4 or 8,3 or 6)
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
#if d%100==0: print(d)
R = class_recs[image_ids[d]]
bb = BB[d,...].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
for j in range(BBGT.shape[0]):
iou = get_iou_main(get_iou_func, (bb, BBGT[j,...]))
if iou > ovmax:
ovmax = iou
jmax = j
#print d, ovmax
if ovmax > ovthresh:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
if ovmax > R['max_overlap'][jmax]:
if ovmax > 1:
print('wrong ovmax: %f'%ovmax)
R['max_overlap'][jmax] = ovmax
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# # avoid divide by zero in case the first detection matches a difficult ground truth
# prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
max_overlaps = []
for i in range(len(class_recs)):
if class_recs[i]['bbox'].size != 0:
max_overlaps += class_recs[i]['max_overlap']
assert len(max_overlaps) == npos
ABO = np.mean(max_overlaps)
return rec, ABO