def eval_det_cls()

in wypr/utils/eval_det.py [0:0]


def eval_det_cls(pred, gt, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou):
    """ Generic functions to compute precision/recall for object detection
        for a single class.
        Input:
            pred: map of {img_id: [(bbox, score)]} where bbox is numpy array
            gt: map of {img_id: [bbox]}
            ovthresh: scalar, iou threshold
            use_07_metric: bool, if True use VOC07 11 point method
        Output:
            rec: numpy array of length nd
            prec: numpy array of length nd
            ap: scalar, average precision
    """

    # construct gt objects
    class_recs = {} # {img_id: {'bbox': bbox list, 'det': matched list}}
    npos = 0
    for img_id in gt.keys():
        bbox = np.array(gt[img_id])
        det = [False] * len(bbox)
        npos += len(bbox)
        class_recs[img_id] = {'bbox': bbox, 'det': det}
    # pad empty list to all other imgids
    for img_id in pred.keys():
        if img_id not in gt:
            class_recs[img_id] = {'bbox': np.array([]), 'det': []}

    # construct dets
    image_ids = []
    confidence = []
    BB = []
    for img_id in pred.keys():
        for box,score in pred[img_id]:
            image_ids.append(img_id)
            confidence.append(score)
            BB.append(box)
    confidence = np.array(confidence)
    BB = np.array(BB) # (nd,4 or 8,3 or 6)

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, ...]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        #if d%100==0: print(d)
        R = class_recs[image_ids[d]]
        bb = BB[d,...].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            for j in range(BBGT.shape[0]):
                iou = get_iou_main(get_iou_func, (bb, BBGT[j,...]))
                if iou > ovmax:
                    ovmax = iou
                    jmax = j

        #print d, ovmax
        if ovmax > ovthresh:
            if not R['det'][jmax]:
                tp[d] = 1.
                R['det'][jmax] = 1
            else:
                fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / np.maximum(float(npos), np.finfo(np.float64).eps)
    #print('NPOS: ', npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap