def fwd()

in xlm/model/transformer.py [0:0]


    def fwd(self, x, lengths, causal, src_enc=None, src_len=None, positions=None, langs=None, cache=None):
        """
        Inputs:
            `x` LongTensor(slen, bs), containing word indices
            `lengths` LongTensor(bs), containing the length of each sentence
            `causal` Boolean, if True, the attention is only done over previous hidden states
            `positions` LongTensor(slen, bs), containing word positions
            `langs` LongTensor(slen, bs), containing language IDs
        """
        # lengths = (x != self.pad_index).float().sum(dim=1)
        # mask = x != self.pad_index

        # check inputs
        slen, bs = x.size()
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
        x = x.transpose(0, 1)  # batch size as dimension 0
        assert (src_enc is None) == (src_len is None)
        if src_enc is not None:
            assert self.is_decoder
            assert src_enc.size(0) == bs

        # generate masks
        mask, attn_mask = get_masks(slen, lengths, causal)
        if self.is_decoder and src_enc is not None:
            src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]

        # positions
        if positions is None:
            positions = x.new(slen).long()
            positions = torch.arange(slen, out=positions).unsqueeze(0)
        else:
            assert positions.size() == (slen, bs)
            positions = positions.transpose(0, 1)

        # langs
        if langs is not None:
            assert langs.size() == (slen, bs)
            langs = langs.transpose(0, 1)

        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
            x = x[:, -_slen:]
            positions = positions[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        tensor = self.embeddings(x)
        tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
        if langs is not None and self.use_lang_emb:
            tensor = tensor + self.lang_embeddings(langs)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
        for i in range(self.n_layers):

            # self attention
            attn = self.attentions[i](tensor, attn_mask, cache=cache)
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
            if self.is_decoder and src_enc is not None:
                attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
                attn = F.dropout(attn, p=self.dropout, training=self.training)
                tensor = tensor + attn
                tensor = self.layer_norm15[i](tensor)

            # FFN
            if ('%i_in' % i) in self.memories:
                tensor = tensor + self.memories['%i_in' % i](tensor)
            else:
                tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)

            # memory
            if ('%i_after' % i) in self.memories:
                tensor = tensor + self.memories['%i_after' % i](tensor)
            # TODO: add extra layer norm here?

            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
        tensor = tensor.transpose(0, 1)

        return tensor