activemri/experimental/cvpr19_models/data/raw_data_loader.py [14:33]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def ifftshift(x, dim=None):
    if dim is None:
        dim = tuple(range(x.dim()))
        shift = [(dim + 1) // 2 for dim in x.shape]
    elif isinstance(dim, int):
        shift = (x.shape[dim] + 1) // 2
    else:
        shift = [(x.shape[i] + 1) // 2 for i in dim]
    return roll(x, shift, dim)


def fftshift(x, dim=None):
    if dim is None:
        dim = tuple(range(x.dim()))
        shift = [dim // 2 for dim in x.shape]
    elif isinstance(dim, int):
        shift = x.shape[dim] // 2
    else:
        shift = [x.shape[i] // 2 for i in dim]
    return roll(x, shift, dim)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



activemri/experimental/cvpr19_models/models/fft_utils.py [27:46]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def ifftshift(x, dim=None):
    if dim is None:
        dim = tuple(range(x.dim()))
        shift = [(dim + 1) // 2 for dim in x.shape]
    elif isinstance(dim, int):
        shift = (x.shape[dim] + 1) // 2
    else:
        shift = [(x.shape[i] + 1) // 2 for i in dim]
    return roll(x, shift, dim)


def fftshift(x, dim=None):
    if dim is None:
        dim = tuple(range(x.dim()))
        shift = [dim // 2 for dim in x.shape]
    elif isinstance(dim, int):
        shift = x.shape[dim] // 2
    else:
        shift = [x.shape[i] // 2 for i in dim]
    return roll(x, shift, dim)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



