in activemri/experimental/cvpr19_models/options/train_options.py [0:0]
def initialize(self, parser):
parser = base_options.BaseOptions.initialize(self, parser)
parser.add_argument(
"--beta1", type=float, default=0.5, help="momentum term of adam"
)
parser.add_argument(
"--lr", type=float, default=0.0002, help="initial learning rate for adam"
)
parser.add_argument(
"--mask_type",
type=str,
choices=[
"basic",
"symmetric_basic",
"low_to_high",
"grid",
"symmetric_grid",
"basic_rnl",
"symmetric_basic_rnl",
"low_to_high_rnl",
],
help="The type of mask to use.",
)
parser.add_argument(
"--rnl_params",
type=str,
default=None,
help="Characterizes the distribution of initial masks (when these are sampled, see "
"--train_with_fixed_initial_mask). "
"Format is min_lowf_lines,max_lowf_lines,highf_beta_alpha,highf_beta_beta. "
"Mask have a random number of low frequency lines active, uniform between "
"min_lowf_lines and max_lowf_lines. The remaining number of lines is determined by "
"a Beta(highf_beta_alpha, highf_beta_beta) distribution, which indicates the "
"proportion of the remaining lines to sample.",
)
parser.add_argument(
"--debug", action="store_true", help="Activates debug level messages."
)
parser.add_argument(
"--add_mask_eval",
action="store_true",
help="Sum mask values to observation in evaluator model.",
)
parser.add_argument("--weights_checkpoint", type=str, default=None)
# parser.add_argument("--validation_train_split_ratio", type=float, default=0.9)
parser.add_argument(
"--max_epochs",
type=int,
default=100,
help="number of epochs to train (default: 5)",
)
# parser.add_argument("--save_freq", type=int, default=200)
# Options for Reconstruction Model
parser.add_argument("--number_of_reconstructor_filters", type=int, default=128)
parser.add_argument("--dropout_probability", type=float, default=0)
parser.add_argument("--number_of_cascade_blocks", type=int, default=3)
parser.add_argument(
"--number_of_layers_residual_bottleneck", type=int, default=6
)
parser.add_argument("--n_downsampling", type=int, default=3)
parser.add_argument("--use_deconv", type=bool, default=True)
# Options for Evaluator Model
parser.add_argument(
"--no_evaluator", dest="use_evaluator", action="store_false"
)
parser.add_argument("--number_of_evaluator_filters", type=int, default=128)
parser.add_argument(
"--number_of_evaluator_convolution_layers", type=int, default=4
)
# Options for both Reconstructor and Evaluator Model
parser.add_argument("--mask_embed_dim", type=int, default=6)
parser.add_argument("--image_width", type=int, default=128)
# Options moved from old model file
parser.add_argument(
"--use_mse_as_disc_energy",
action="store_true",
help="use MSE as evaluator energy",
)
parser.add_argument(
"--grad_ctx",
action="store_true",
help="GAN criterion computes adversarial loss signal at provided k-space lines.",
)
parser.add_argument(
"--lambda_gan",
type=float,
default=0.01,
help="Weight for reconstruction loss.",
)
parser.add_argument("--gamma", type=int, default=100)
parser.add_argument(
"--only_evaluator", dest="only_evaluator", action="store_true"
)
return parser