in activemri/experimental/cvpr19_models/util/common.py [0:0]
def tensor2im(input_image, imtype=np.uint8, renormalize=True):
if isinstance(input_image, torch.Tensor):
image_tensor = input_image.data
else:
return input_image
# do normalization first, since we working on fourier space. we need to clamp
if renormalize:
image_tensor.add_(1).div_(2)
image_tensor.mul_(255).clamp_(0, 255)
if len(image_tensor.shape) == 4:
image_numpy = image_tensor[0].cpu().float().numpy()
else:
image_numpy = image_tensor.cpu().float().numpy()
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
return image_numpy.astype(imtype)