in activemri/experimental/cvpr19_models/models/reconstruction.py [0:0]
def init_func(m):
init_type = "normal"
gain = 0.02
classname = m.__class__.__name__
if hasattr(m, "weight") and (
classname.find("Conv") != -1 or classname.find("Linear") != -1
):
if init_type == "normal":
torch.nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == "xavier":
torch.nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == "kaiming":
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
torch.nn.init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError(
"initialization method [%s] is not implemented" % init_type
)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, gain)
torch.nn.init.constant_(m.bias.data, 0.0)