def initial()

in env_utils.py [0:0]


    def initial(self):
        initial_reward = torch.zeros(1, 1)
        self.episode_return = torch.zeros(1, 1)
        self.episode_step = torch.zeros(1, 1, dtype=torch.int32)
        self.episode_win = torch.zeros(1, 1, dtype=torch.int32)
        initial_done = torch.ones(1, 1, dtype=torch.uint8)
        if self.fix_seed:
            self.gym_env.seed(seed=self.env_seed)
        initial_frame = _format_observation(self.gym_env.reset())


        if self.gym_env.carrying:
            carried_col, carried_obj = torch.LongTensor([[COLOR_TO_IDX[self.gym_env.carrying.color]]]), torch.LongTensor([[OBJECT_TO_IDX[self.gym_env.carrying.type]]])
        else:
            carried_col, carried_obj = torch.LongTensor([[5]]), torch.LongTensor([[1]])

        return dict(
            frame=initial_frame,
            reward=initial_reward,
            done=initial_done,
            episode_return=self.episode_return,
            episode_step=self.episode_step,
            episode_win=self.episode_win,
            carried_col = carried_col,
            carried_obj = carried_obj)