in aepsych/strategy.py [0:0]
def from_config(cls, config: Config, name: str):
gen_cls = config.getobj(name, "generator", fallback=SobolGenerator)
generator = gen_cls.from_config(config)
model_cls = config.getobj(name, "model", fallback=None)
if model_cls is not None:
model = model_cls.from_config(config)
else:
model = None
acqf_cls = config.getobj(name, "acqf", fallback=None)
if acqf_cls is not None and hasattr(generator, "acqf"):
if generator.acqf is None:
generator.acqf = acqf_cls
generator.acqf_kwargs = generator._get_acqf_options(acqf_cls, config)
n_trials = config.getint(name, "n_trials")
refit_every = config.getint(name, "refit_every", fallback=1)
lb = config.gettensor(name, "lb")
ub = config.gettensor(name, "ub")
dim = config.getint(name, "dim", fallback=None)
outcome_type = config.get(name, "outcome_type", fallback="single_probit")
return cls(
lb=lb,
ub=ub,
dim=dim,
model=model,
generator=generator,
n_trials=n_trials,
refit_every=refit_every,
outcome_type=outcome_type,
)