in conv_split_awa_hybrid.py [0:0]
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split AWA Hybrid experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--set-hybrid", action="store_true",
help="If option is chosen then train using hybrid model")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the AWA data will be read.\
NOTE: Provide path till <AWA_DIR>/Animals_with_Attributes2")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="TF checkpoint file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF Checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()