in benchmarks/run_ebo_benchmarks.py [0:0]
def run_branin_benchmarks(rep):
experiment, f = benchmark_minimize_callable(
problem=branin_100,
num_trials=50,
method_name='ebo',
replication_index=rep,
)
options = {
'x_range': np.vstack((
np.hstack((-5 * np.ones(50), np.zeros(50))),
np.hstack((10 * np.ones(50), 15 * np.ones(50))),
)),
'dx': 100,
'max_value': -0.397887, # Let it cheat and know the true max value
'T': 50,
'gp_sigma': 1e-7,
}
options.update(core_options)
f_max = lambda x: -f(x) # since EBO maximizes
e = ebo(f_max, options)
try:
e.run()
except ValueError:
pass # EBO can ask for more than T function evaluations
with open(f'results/branin_100_ebo_rep_{rep}.json', "w") as fout:
json.dump(object_to_json(experiment), fout)