src/modeling/dummy_modeling_xlnet.py [1261:1308]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        output_attentions=None,
        output_hidden_states=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Return:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:(batch_size, config.num_labels)`):
            Classification scores (before SoftMax).
        mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        sequence_output = outputs[0]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/modeling/dummy_modeling_xlnet.py [1468:1521]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        output_attentions=None,
        output_hidden_states=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-start scores (before SoftMax).
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-end scores (before SoftMax).
        mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        sequence_output = outputs[0]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



