src/nli/training.py [576:594]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    if not args.cpu and not args.single_gpu:
        model = nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
                                                    output_device=local_rank, find_unused_parameters=True)

    args_dict = dict(vars(args))
    file_path_prefix = '.'
    if args.global_rank in [-1, 0]:
        print("Total Steps:", t_total)
        args.total_step = t_total
        print("Warmup Steps:", args.warmup_steps)
        print("Actual Training Batch Size:", actual_train_batch_size)
        print("Arguments", pp.pprint(args))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/nli/training_extra.py [583:601]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    if not args.cpu and not args.single_gpu:
        model = nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
                                                    output_device=local_rank, find_unused_parameters=True)

    args_dict = dict(vars(args))
    file_path_prefix = '.'
    if args.global_rank in [-1, 0]:
        print("Total Steps:", t_total)
        args.total_step = t_total
        print("Warmup Steps:", args.warmup_steps)
        print("Actual Training Batch Size:", actual_train_batch_size)
        print("Arguments", pp.pprint(args))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



