experiments/overlap/wideresnet.py [12:142]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class BasicBlock(nn.Module):
  """Basic ResNet block."""

  def __init__(self, in_planes, out_planes, stride, drop_rate=0.0):
    super(BasicBlock, self).__init__()
    self.bn1 = nn.BatchNorm2d(in_planes)
    self.relu1 = nn.ReLU(inplace=True)
    self.conv1 = nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False)
    self.bn2 = nn.BatchNorm2d(out_planes)
    self.relu2 = nn.ReLU(inplace=True)
    self.conv2 = nn.Conv2d(
        out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
    self.drop_rate = drop_rate
    self.is_in_equal_out = (in_planes == out_planes)
    self.conv_shortcut = (not self.is_in_equal_out) and nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=1,
        stride=stride,
        padding=0,
        bias=False) or None

  def forward(self, x):
    if not self.is_in_equal_out:
      x = self.relu1(self.bn1(x))
    else:
      out = self.relu1(self.bn1(x))
    if self.is_in_equal_out:
      out = self.relu2(self.bn2(self.conv1(out)))
    else:
      out = self.relu2(self.bn2(self.conv1(x)))
    if self.drop_rate > 0:
      out = F.dropout(out, p=self.drop_rate, training=self.training)
    out = self.conv2(out)
    if not self.is_in_equal_out:
      return torch.add(self.conv_shortcut(x), out)
    else:
      return torch.add(x, out)


class NetworkBlock(nn.Module):
  """Layer container for blocks."""

  def __init__(self,
               nb_layers,
               in_planes,
               out_planes,
               block,
               stride,
               drop_rate=0.0):
    super(NetworkBlock, self).__init__()
    self.layer = self._make_layer(block, in_planes, out_planes, nb_layers,
                                  stride, drop_rate)

  def _make_layer(self, block, in_planes, out_planes, nb_layers, stride,
                  drop_rate):
    layers = []
    for i in range(nb_layers):
      layers.append(
          block(i == 0 and in_planes or out_planes, out_planes,
                i == 0 and stride or 1, drop_rate))
    return nn.Sequential(*layers)

  def forward(self, x):
    return self.layer(x)


class WideResNet(nn.Module):
  """WideResNet class."""

  def __init__(self, depth, num_classes, widen_factor=1, drop_rate=0.0):
    super(WideResNet, self).__init__()
    self.depth = depth
    self.widen_factor = widen_factor
    n_channels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
    assert (depth - 4) % 6 == 0
    n = (depth - 4) // 6
    block = BasicBlock
    # 1st conv before any network block
    self.conv1 = nn.Conv2d(
        3, n_channels[0], kernel_size=3, stride=1, padding=1, bias=False)
    # 1st block
    self.block1 = NetworkBlock(n, n_channels[0], n_channels[1], block, 1,
                               drop_rate)
    # 2nd block
    self.block2 = NetworkBlock(n, n_channels[1], n_channels[2], block, 2,
                               drop_rate)
    # 3rd block
    self.block3 = NetworkBlock(n, n_channels[2], n_channels[3], block, 2,
                               drop_rate)
    # global average pooling and classifier
    self.bn1 = nn.BatchNorm2d(n_channels[3])
    self.relu = nn.ReLU(inplace=True)
    self.fc = nn.Linear(n_channels[3], num_classes)
    self.n_channels = n_channels[3]

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()
      elif isinstance(m, nn.Linear):
        m.bias.data.zero_()


  def forward(self, x):
    out = self.conv1(x)
    out = self.block1(out)
    out = self.block2(out)
    out = self.block3(out)
    out = self.relu(self.bn1(out))
    out = F.avg_pool2d(out, 8)
    out = out.view(-1, self.n_channels)
    self.features = out #Expose penultimate layer for access as features
    return self.fc(out)

# Stage depths for ImageNet models
_IN_STAGE_DS = {
    18: (2, 2, 2, 2),
    50: (3, 4, 6, 3),
    101: (3, 4, 23, 3),
    152: (3, 8, 36, 3),
}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



notebook_utils/wideresnet.py [13:143]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class BasicBlock(nn.Module):
  """Basic ResNet block."""

  def __init__(self, in_planes, out_planes, stride, drop_rate=0.0):
    super(BasicBlock, self).__init__()
    self.bn1 = nn.BatchNorm2d(in_planes)
    self.relu1 = nn.ReLU(inplace=True)
    self.conv1 = nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False)
    self.bn2 = nn.BatchNorm2d(out_planes)
    self.relu2 = nn.ReLU(inplace=True)
    self.conv2 = nn.Conv2d(
        out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
    self.drop_rate = drop_rate
    self.is_in_equal_out = (in_planes == out_planes)
    self.conv_shortcut = (not self.is_in_equal_out) and nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=1,
        stride=stride,
        padding=0,
        bias=False) or None

  def forward(self, x):
    if not self.is_in_equal_out:
      x = self.relu1(self.bn1(x))
    else:
      out = self.relu1(self.bn1(x))
    if self.is_in_equal_out:
      out = self.relu2(self.bn2(self.conv1(out)))
    else:
      out = self.relu2(self.bn2(self.conv1(x)))
    if self.drop_rate > 0:
      out = F.dropout(out, p=self.drop_rate, training=self.training)
    out = self.conv2(out)
    if not self.is_in_equal_out:
      return torch.add(self.conv_shortcut(x), out)
    else:
      return torch.add(x, out)


class NetworkBlock(nn.Module):
  """Layer container for blocks."""

  def __init__(self,
               nb_layers,
               in_planes,
               out_planes,
               block,
               stride,
               drop_rate=0.0):
    super(NetworkBlock, self).__init__()
    self.layer = self._make_layer(block, in_planes, out_planes, nb_layers,
                                  stride, drop_rate)

  def _make_layer(self, block, in_planes, out_planes, nb_layers, stride,
                  drop_rate):
    layers = []
    for i in range(nb_layers):
      layers.append(
          block(i == 0 and in_planes or out_planes, out_planes,
                i == 0 and stride or 1, drop_rate))
    return nn.Sequential(*layers)

  def forward(self, x):
    return self.layer(x)


class WideResNet(nn.Module):
  """WideResNet class."""

  def __init__(self, depth, num_classes, widen_factor=1, drop_rate=0.0):
    super(WideResNet, self).__init__()
    self.depth = depth
    self.widen_factor = widen_factor
    n_channels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
    assert (depth - 4) % 6 == 0
    n = (depth - 4) // 6
    block = BasicBlock
    # 1st conv before any network block
    self.conv1 = nn.Conv2d(
        3, n_channels[0], kernel_size=3, stride=1, padding=1, bias=False)
    # 1st block
    self.block1 = NetworkBlock(n, n_channels[0], n_channels[1], block, 1,
                               drop_rate)
    # 2nd block
    self.block2 = NetworkBlock(n, n_channels[1], n_channels[2], block, 2,
                               drop_rate)
    # 3rd block
    self.block3 = NetworkBlock(n, n_channels[2], n_channels[3], block, 2,
                               drop_rate)
    # global average pooling and classifier
    self.bn1 = nn.BatchNorm2d(n_channels[3])
    self.relu = nn.ReLU(inplace=True)
    self.fc = nn.Linear(n_channels[3], num_classes)
    self.n_channels = n_channels[3]

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()
      elif isinstance(m, nn.Linear):
        m.bias.data.zero_()


  def forward(self, x):
    out = self.conv1(x)
    out = self.block1(out)
    out = self.block2(out)
    out = self.block3(out)
    out = self.relu(self.bn1(out))
    out = F.avg_pool2d(out, 8)
    out = out.view(-1, self.n_channels)
    self.features = out #Expose penultimate layer for access as features
    return self.fc(out)

# Stage depths for ImageNet models
_IN_STAGE_DS = {
    18: (2, 2, 2, 2),
    50: (3, 4, 6, 3),
    101: (3, 4, 23, 3),
    152: (3, 8, 36, 3),
}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



