in experiments/overlap/datasets.py [0:0]
def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, subpolicy_list=None, add_cutout=False, transform_file=None):
def stom(low, high, sev):
return sev / 10 * (high - low) + low
size = im_size
init = lambda transform : transform(0, size)
tn = 150/331 * im_size
if subpolicy_list is None:
subpolicy_list = [
[(init(pil.Invert), 0.1, None, None), (init(pil.Contrast), 0.2, stom(0,0.9,6), 1)],
[(init(pil.Rotate), 0.7, stom(0,30,2), 0), (init(pil.TranslateX), 0.3, stom(0,tn,9), 0)],
[(init(pil.Sharpness), 0.8, stom(0,0.9,1), 1), (init(pil.Sharpness), 0.9, stom(0,0.9,3), 1)],
[(init(pil.ShearY), 0.5, stom(0,0.3,8), 0), (init(pil.TranslateY), 0.7, stom(0,tn,9), 0)],
[(init(pil.AutoContrast), 0.5, None, None), (init(pil.Equalize), 0.9, None, None)],
[(init(pil.ShearY), 0.2, stom(0,0.3,7), 0), (init(pil.Posterize), 0.3, int(stom(4,8,7)), None)],
[(init(pil.ColorBalance), 0.4, stom(0,0.9,3),1), (init(pil.Brightness), 0.6, stom(0,0.9,7),1)],
[(init(pil.Sharpness), 0.3, stom(0,0.9,9),1), (init(pil.Brightness), 0.7, stom(0,0.9,9),1)],
[(init(pil.Equalize), 0.6, None, None), (init(pil.Equalize), 0.5, None, None)],
[(init(pil.Contrast), 0.6, stom(0,0.9,7),1), (init(pil.Sharpness), 0.6, stom(0,0.9,5),1)],
[(init(pil.ColorBalance), 0.7, stom(0,0.9,7),1), (init(pil.TranslateX), 0.5, stom(0,tn,8),0)],
[(init(pil.Equalize), 0.3, None, None), (init(pil.AutoContrast), 0.4, None, None)],
[(init(pil.TranslateY), 0.4, stom(0,tn,3),0), (init(pil.Sharpness), 0.2, stom(0,0.9,6),1)],
[(init(pil.Brightness), 0.9, stom(0,0.9,6),1), (init(pil.ColorBalance), 0.2, stom(0,0.9,8),1)],
[(init(pil.Solarize), 0.5, stom(256,0,2),None), (init(pil.Invert), 0.0, None,None)],
[(init(pil.Equalize), 0.2, None, None), (init(pil.AutoContrast), 0.6, None, None)],
[(init(pil.Equalize), 0.2, None, None), (init(pil.Equalize), 0.6, None, None)],
[(init(pil.ColorBalance), 0.9, stom(0,0.9,9),1), (init(pil.Equalize), 0.6, None, None)],
[(init(pil.AutoContrast), 0.8, None, None), (init(pil.Solarize), 0.2, stom(256,0,8), None)],
[(init(pil.Brightness), 0.1, stom(0,0.9,3),1), (init(pil.ColorBalance), 0.7, stom(0,0.9,0),1)],
[(init(pil.Solarize), 0.4, stom(256,0,5), None), (init(pil.AutoContrast), 0.9, None, None)],
[(init(pil.TranslateY), 0.9, stom(0,tn,9), None), (init(pil.TranslateY), 0.7, stom(0,tn,9),0)],
[(init(pil.AutoContrast), 0.9, None, None), (init(pil.Solarize), 0.8, stom(256,0,3), None)],
[(init(pil.Equalize), 0.8, None, None), (init(pil.Invert), 0.1, None, None)],
[(init(pil.TranslateY), 0.7, stom(0,tn,9), 0), (init(pil.AutoContrast), 0.9, None, None)]
]
aug = compositions.AutoAugment(subpolicy_list)
if add_cutout:
cutout = obscure.CutOut(severity=10, im_size=im_size, max_intensity=True)
aug = compositions.ComposeSerially([aug, cutout])
super(Cifar10AutoAugment, self).__init__(data_path, split, im_size, train_aug, num_transforms,
aug, transform_file=transform_file)