def __init__()

in avhubert/hubert_asr.py [0:0]


    def __init__(self, cfg: AVHubertAsrConfig, tgt_dict=None):
        self.apply_mask = cfg.apply_mask

        arg_overrides = {
            "dropout": cfg.dropout,
            "activation_dropout": cfg.activation_dropout,
            "dropout_input": cfg.dropout_input,
            "attention_dropout": cfg.attention_dropout,
            "mask_length": cfg.mask_length,
            "mask_prob": cfg.mask_prob,
            "mask_selection": cfg.mask_selection,
            "mask_other": cfg.mask_other,
            "no_mask_overlap": cfg.no_mask_overlap,
            "mask_channel_length": cfg.mask_channel_length,
            "mask_channel_prob": cfg.mask_channel_prob,
            "mask_channel_selection": cfg.mask_channel_selection,
            "mask_channel_other": cfg.mask_channel_other,
            "no_mask_channel_overlap": cfg.no_mask_channel_overlap,
            "encoder_layerdrop": cfg.layerdrop,
            "feature_grad_mult": cfg.feature_grad_mult,
        }

        if cfg.w2v_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(
                cfg.w2v_path, arg_overrides
            )
            w2v_args = state.get("cfg", None)
            if w2v_args is None:
                w2v_args = convert_namespace_to_omegaconf(state["args"])
            cfg.w2v_args = w2v_args
        else:
            state = None
            w2v_args = cfg.w2v_args
            if isinstance(w2v_args, Namespace):
                cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(
                    w2v_args
                )

        assert cfg.normalize == w2v_args.task.normalize, (
            "Fine-tuning works best when data normalization is the same. "
            "Please check that --normalize is set or unset for "
            "both pre-training and here"
        )

        w2v_args.task.data = cfg.data

        task = tasks.setup_task(w2v_args.task)
        model = task.build_model(w2v_args.model)

        if state is not None and not cfg.no_pretrained_weights:
            # set strict=False because we omit some modules
            model.load_state_dict(state["model"], strict=False)

        model.remove_pretraining_modules()

        super().__init__(task.source_dictionary)

        d = model.encoder.embedding_dim

        self.w2v_model = model

        self.final_dropout = nn.Dropout(cfg.final_dropout)
        self.freeze_finetune_updates = cfg.freeze_finetune_updates
        self.num_updates = 0

        if tgt_dict is not None:
            self.proj = Linear(d, len(tgt_dict))
        elif getattr(cfg, "decoder_embed_dim", d) != d:
            self.proj = Linear(d, cfg.decoder_embed_dim)
        else:
            self.proj = None