def load_dataset()

in avhubert/hubert_pretraining.py [0:0]


    def load_dataset(self, split: str, **kwargs) -> None:
        manifest = f"{self.cfg.data}/{split}.tsv"
        dictionaries = [self.target_dictionary] if self.fine_tuning else self.dictionaries
        pad_list = [dictionary.pad() for dictionary in dictionaries]
        eos_list = [dictionary.eos() for dictionary in dictionaries]
        if not self.cfg.is_s2s:
            procs = [LabelEncoder(dictionary) for dictionary in dictionaries]
        else:
            logger.info(f"Using tokenizer")
            bpe_tokenizer = self.s2s_tokenizer
            procs = [LabelEncoderS2SToken(dictionary, bpe_tokenizer) for dictionary in dictionaries]
        paths = [
            f"{self.get_label_dir()}/{split}.{l}" for l in self.cfg.labels
        ]
        image_aug = self.cfg.image_aug if split == 'train' else False
        noise_fn, noise_snr = f"{self.cfg.noise_wav}/{split}.tsv" if self.cfg.noise_wav is not None else None, eval(self.cfg.noise_snr)
        noise_num = self.cfg.noise_num # 
        self.datasets[split] = AVHubertDataset(
            manifest,
            sample_rate=self.cfg.sample_rate,
            label_paths=paths,
            label_rates=self.cfg.label_rate,
            pad_list=pad_list,
            eos_list=eos_list,
            label_processors=procs,
            max_keep_sample_size=self.cfg.max_sample_size,
            min_keep_sample_size=self.cfg.min_sample_size,
            max_sample_size=self.cfg.max_trim_sample_size,
            pad_audio=self.cfg.pad_audio,
            normalize=self.cfg.normalize,
            store_labels=False,
            random_crop=self.cfg.random_crop,
            single_target=self.cfg.single_target,
            stack_order_audio=self.cfg.stack_order_audio,
            skip_verify=self.cfg.skip_verify,
            image_mean=self.cfg.image_mean,
            image_std=self.cfg.image_std,
            image_crop_size=self.cfg.image_crop_size,
            image_aug=image_aug,
            modalities=self.cfg.modalities,
            is_s2s=self.cfg.is_s2s,
            noise_fn=noise_fn,
            noise_prob=self.cfg.noise_prob,
            noise_snr=noise_snr,
            noise_num=noise_num
        )