def reduce_metrics()

in avhubert/hubert_criterion.py [0:0]


    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)

        metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3)
        if sample_size != ntokens:
            metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3)
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg))
        else:
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg))

        counts = {}
        for lk in logging_outputs[0].keys():
            if lk.startswith("count_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val)
                counts[lk] = val

        for lk in logging_outputs[0].keys():
            if lk.startswith("loss_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
            elif lk.startswith("correct_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])