def adjust_learning_rate()

in main.py [0:0]


def adjust_learning_rate(args, optimizer, loader, step):
    max_steps = args.epochs * len(loader)
    warmup_steps = 10 * len(loader)
    base_lr = args.batch_size / 256
    if step < warmup_steps:
        lr = base_lr * step / warmup_steps
    else:
        step -= warmup_steps
        max_steps -= warmup_steps
        q = 0.5 * (1 + math.cos(math.pi * step / max_steps))
        end_lr = base_lr * 0.001
        lr = base_lr * q + end_lr * (1 - q)
    optimizer.param_groups[0]['lr'] = lr * args.learning_rate_weights
    optimizer.param_groups[1]['lr'] = lr * args.learning_rate_biases