in dataset/co3d_dataset.py [0:0]
def _resize_image(self, image, mode="bilinear"):
if self.image_height is None and self.image_width is None:
# skip the resizing
imre_ = torch.from_numpy(image)
return imre_, 1.0, torch.ones_like(imre_[:1])
# takes numpy array, returns pytorch tensor
minscale = min(
self.image_height / image.shape[-2],
self.image_width / image.shape[-1],
)
imre = torch.nn.functional.interpolate(
torch.from_numpy(image)[None],
scale_factor=minscale,
mode=mode,
align_corners=False if mode == "bilinear" else None,
recompute_scale_factor=True,
)[0]
imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width)
imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
mask = torch.zeros(1, self.image_height, self.image_width)
mask[:, 0 : imre.shape[1] - 1, 0 : imre.shape[2] - 1] = 1.0
return imre_, minscale, mask