def _resize_image()

in dataset/co3d_dataset.py [0:0]


    def _resize_image(self, image, mode="bilinear"):
        if self.image_height is None and self.image_width is None:
            # skip the resizing
            imre_ = torch.from_numpy(image)
            return imre_, 1.0, torch.ones_like(imre_[:1])
        # takes numpy array, returns pytorch tensor
        minscale = min(
            self.image_height / image.shape[-2],
            self.image_width / image.shape[-1],
        )
        imre = torch.nn.functional.interpolate(
            torch.from_numpy(image)[None],
            scale_factor=minscale,
            mode=mode,
            align_corners=False if mode == "bilinear" else None,
            recompute_scale_factor=True,
        )[0]
        imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width)
        imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
        mask = torch.zeros(1, self.image_height, self.image_width)
        mask[:, 0 : imre.shape[1] - 1, 0 : imre.shape[2] - 1] = 1.0
        return imre_, minscale, mask