def _get_clamp_bbox()

in dataset/co3d_dataset.py [0:0]


def _get_clamp_bbox(bbox, box_crop_context=0.0, impath=""):
    # box_crop_context: rate of expansion for bbox
    # returns possibly expanded bbox xyxy as float

    # increase box size
    if box_crop_context > 0.0:
        c = box_crop_context
        bbox = bbox.float()
        bbox[0] -= bbox[2] * c / 2
        bbox[1] -= bbox[3] * c / 2
        bbox[2] += bbox[2] * c
        bbox[3] += bbox[3] * c

    if (bbox[2:] <= 1.0).any():
        warnings.warn(f"squashed image {impath}!!")
        return None

    bbox[2:] = torch.clamp(bbox[2:], 2)
    bbox[2:] += bbox[0:2] + 1  # convert to [xmin, ymin, xmax, ymax]
    # +1 because upper bound is not inclusive

    return bbox