in dataset/co3d_dataset.py [0:0]
def _load_mask_depth(self, entry, clamp_bbox_xyxy, fg_probability):
path = os.path.join(self.dataset_root, entry.depth.path)
depth_map = _load_depth(path, entry.depth.scale_adjustment)
if self.box_crop:
depth_bbox_xyxy = _rescale_bbox(
clamp_bbox_xyxy, entry.image.size, depth_map.shape[-2:]
)
depth_map = _crop_around_box(depth_map, depth_bbox_xyxy, path)
depth_map, _, _ = self._resize_image(depth_map, mode="nearest")
if self.mask_depths:
assert fg_probability is not None
depth_map *= fg_probability
if self.load_depth_masks:
assert entry.depth.mask_path is not None
mask_path = os.path.join(self.dataset_root, entry.depth.mask_path)
depth_mask = _load_depth_mask(mask_path)
if self.box_crop:
depth_mask_bbox_xyxy = _rescale_bbox(
clamp_bbox_xyxy, entry.image.size, depth_mask.shape[-2:]
)
depth_mask = _crop_around_box(
depth_mask, depth_mask_bbox_xyxy, mask_path
)
depth_mask, _, _ = self._resize_image(depth_mask, mode="nearest")
else:
depth_mask = torch.ones_like(depth_map)
return depth_map, path, depth_mask