in eval_demo.py [0:0]
def main():
"""
Evaluates new view synthesis metrics of a simple depth-based image rendering
(DBIR) model for multisequence/singlesequence tasks for several categories.
The evaluation is conducted on the same data as in [1] and, hence, the results
are directly comparable to the numbers reported in [1].
References:
[1] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone,
P. Labatut, D. Novotny:
Common Objects in 3D: Large-Scale Learning
and Evaluation of Real-life 3D Category Reconstruction
"""
task_results = {}
for task in ("singlesequence", "multisequence"):
task_results[task] = []
for category in CO3D_CATEGORIES[: (20 if task == "singlesequence" else 10)]:
for single_sequence_id in (0, 1) if task == "singlesequence" else (None,):
category_result = evaluate_dbir_for_category(
category, task=task, single_sequence_id=single_sequence_id
)
print("")
print(
f"Results for task={task}; category={category};"
+ (
f" sequence={single_sequence_id}:"
if single_sequence_id is not None
else ":"
)
)
pretty_print_nvs_metrics(category_result)
print("")
task_results[task].append(category_result)
_print_aggregate_results(task, task_results)
for task in task_results:
_print_aggregate_results(task, task_results)