def _diverse_sample()

in captioning/models/AttModel_orig.py [0:0]


    def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):

        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        group_size = opt.get('group_size', 1)
        diversity_lambda = opt.get('diversity_lambda', 0.5)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)
        remove_bad_endings = opt.get('remove_bad_endings', 0)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries

        seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)]
        seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)]
        state_table = [self.init_hidden(batch_size) for _ in range(group_size)]

        for tt in range(self.seq_length + group_size):
            for divm in range(group_size):
                t = tt - divm
                seq = seq_table[divm]
                seqLogprobs = seqLogprobs_table[divm]
                trigrams = trigrams_table[divm]
                if t >= 0 and t <= self.seq_length-1:
                    if t == 0: # input <bos>
                        it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
                    else:
                        it = seq[:, t-1] # changed

                    logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed
                    logprobs = F.log_softmax(logprobs / temperature, dim=-1)

                    # Add diversity
                    if divm > 0:
                        unaug_logprobs = logprobs.clone()
                        for prev_choice in range(divm):
                            prev_decisions = seq_table[prev_choice][:, t]
                            logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda
                    
                    if decoding_constraint and t > 0:
                        tmp = logprobs.new_zeros(logprobs.size())
                        tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
                        logprobs = logprobs + tmp

                    if remove_bad_endings and t > 0:
                        tmp = logprobs.new_zeros(logprobs.size())
                        prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
                        # Impossible to generate remove_bad_endings
                        tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
                        logprobs = logprobs + tmp

                    # Mess with trigrams
                    if block_trigrams and t >= 3:
                        # Store trigram generated at last step
                        prev_two_batch = seq[:,t-3:t-1]
                        for i in range(batch_size): # = seq.size(0)
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            current  = seq[i][t-1]
                            if t == 3: # initialize
                                trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
                            elif t > 3:
                                if prev_two in trigrams[i]: # add to list
                                    trigrams[i][prev_two].append(current)
                                else: # create list
                                    trigrams[i][prev_two] = [current]
                        # Block used trigrams at next step
                        prev_two_batch = seq[:,t-2:t]
                        mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
                        for i in range(batch_size):
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            if prev_two in trigrams[i]:
                                for j in trigrams[i][prev_two]:
                                    mask[i,j] += 1
                        # Apply mask to log probs
                        #logprobs = logprobs - (mask * 1e9)
                        alpha = 2.0 # = 4
                        logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)

                    it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)

                    # stop when all finished
                    if t == 0:
                        unfinished = it != self.eos_idx
                    else:
                        unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx
                        it[~unfinished] = self.pad_idx
                        unfinished = unfinished & (it != self.eos_idx) # changed
                    seq[:,t] = it
                    seqLogprobs[:,t] = sampleLogprobs.view(-1)

        return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1)