in projects_oss/detr/detr/models/segmentation.py [0:0]
def forward(self, outputs, processed_sizes, target_sizes=None): # noqa: C901
"""This function computes the panoptic prediction from the model's predictions.
Parameters:
outputs: This is a dict coming directly from the model. See the model doc for the content.
processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
model, ie the size after data augmentation but before batching.
target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
of each prediction. If left to None, it will default to the processed_sizes
"""
if target_sizes is None:
target_sizes = processed_sizes
assert len(processed_sizes) == len(target_sizes)
out_logits, raw_masks, raw_boxes = (
outputs["pred_logits"],
outputs["pred_masks"],
outputs["pred_boxes"],
)
assert len(out_logits) == len(raw_masks) == len(target_sizes)
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.cpu().tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
scores, labels = cur_logits.softmax(-1).max(-1)
keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (
scores > self.threshold
)
cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
cur_scores = cur_scores[keep]
cur_classes = cur_classes[keep]
cur_masks = cur_masks[keep]
cur_masks = interpolate(
cur_masks[:, None], to_tuple(size), mode="bilinear"
).squeeze(1)
cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
assert len(cur_boxes) == len(cur_classes)
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_classes):
if not self.is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(
size=(final_w, final_h), resample=Image.NEAREST
)
np_seg_img = (
torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes()))
.view(final_h, final_w, 3)
.numpy()
)
m_id = torch.from_numpy(rgb2id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_classes.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_classes)],
dtype=torch.bool,
device=keep.device,
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_classes[i].item()
segments_info.append(
{
"id": i,
"isthing": self.is_thing_map[cat],
"category_id": cat,
"area": a,
}
)
del cur_classes
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {
"png_string": out.getvalue(),
"segments_info": segments_info,
}
preds.append(predictions)
return preds