def evaluate()

in projects_oss/detr/detr/datasets/coco_eval.py [0:0]


def evaluate(self):
    """
    Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
    :return: None
    """
    # tic = time.time()
    # print('Running per image evaluation...')
    p = self.params
    # add backward compatibility if useSegm is specified in params
    if p.useSegm is not None:
        p.iouType = "segm" if p.useSegm == 1 else "bbox"
        print(
            "useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)
        )
    # print('Evaluate annotation type *{}*'.format(p.iouType))
    p.imgIds = list(np.unique(p.imgIds))
    if p.useCats:
        p.catIds = list(np.unique(p.catIds))
    p.maxDets = sorted(p.maxDets)
    self.params = p

    self._prepare()
    # loop through images, area range, max detection number
    catIds = p.catIds if p.useCats else [-1]

    if p.iouType == "segm" or p.iouType == "bbox":
        computeIoU = self.computeIoU
    elif p.iouType == "keypoints":
        computeIoU = self.computeOks
    self.ious = {
        (imgId, catId): computeIoU(imgId, catId)
        for imgId in p.imgIds
        for catId in catIds
    }

    evaluateImg = self.evaluateImg
    maxDet = p.maxDets[-1]
    evalImgs = [
        evaluateImg(imgId, catId, areaRng, maxDet)
        for catId in catIds
        for areaRng in p.areaRng
        for imgId in p.imgIds
    ]
    # this is NOT in the pycocotools code, but could be done outside
    evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
    self._paramsEval = copy.deepcopy(self.params)
    # toc = time.time()
    # print('DONE (t={:0.2f}s).'.format(toc-tic))
    return p.imgIds, evalImgs