in utils/visualize/visualize_clf.py [0:0]
def get_sequential_colors(n):
"""
Return a list of n sequential color maps, the extreme color associated
with it (or similar color) and a bright similar color.
"""
assert n <= 10
# for binary classification same as using plt.cm.RdBu
cmaps = [
make_cmap(plt.cm.Blues),
make_cmap(plt.cm.Reds),
make_cmap(plt.cm.Greens),
make_cmap(plt.cm.Purples),
make_cmap(["white", "xkcd:dark grey"]),
make_cmap(plt.cm.Oranges),
make_cmap(["white", "xkcd:olive"]),
make_cmap(["white", "xkcd:brown"]),
make_cmap(["white", "xkcd:dark turquoise"]),
make_cmap(["white", "xkcd:bordeaux"]),
]
extreme_colors = [
"xkcd:darkish blue",
"xkcd:darkish red",
"xkcd:darkish green",
"xkcd:indigo",
"xkcd:dark grey",
"xkcd:dark orange",
"xkcd:olive",
"xkcd:brown",
"xkcd:dark turquoise",
"xkcd:bordeaux",
]
bright_colors = [
"xkcd:bright blue",
"xkcd:bright red",
"xkcd:green",
"xkcd:bright purple",
"k",
"xkcd:bright orange",
"xkcd:bright olive",
"xkcd:golden brown",
"xkcd:bright turquoise",
"xkcd:purple red",
]
return cmaps[:n], extreme_colors[:n], bright_colors[:n]