in neural/__main__.py [0:0]
def get_parser():
parser = argparse.ArgumentParser("neural", description="Train MEG predictor using forcings")
parser.add_argument(
"-o", "--out", type=Path, default=Path("dump"),
help="Folder where checkpoints and metrics are saved.")
parser.add_argument(
"-R", "--restart", action='store_true', help='Restart training, ignoring previous run')
parser.add_argument("--seed", type=int, default=42, help="Random seed")
# Dataset related
parser.add_argument(
"-d", "--data", type=Path,
required=True,
help="Path to the data extracted.")
parser.add_argument("-s", "--subjects", type=int, default=68,
help="Maximum number of subjects.")
parser.add_argument("--pca", type=int, help="Use PCA version of the data. "
"Should be the dimension of the PCA used.")
parser.add_argument("-x", "--exclude", action="append", default=[], help="Exclude features")
parser.add_argument("-i", "--include", action="append", default=[], help="Include features")
# Optimization parameters
parser.add_argument("-e", "--epochs", type=int, default=60,
help="Number of epochs to train for.")
parser.add_argument("-b", "--batch-size", type=int, default=32)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--l1", action="store_true", help="Use L1 loss instead of MSE")
# Parameters to the model
parser.add_argument("--conv-layers", type=int, default=2,
help="Number of convolution layers in the encoder/decoder.")
parser.add_argument("--lstm-layers", type=int, default=2,
help="Number of LSTM layers.")
parser.add_argument("--conv-channels", type=int, default=512,
help="Output channels for convolutions.")
parser.add_argument("--lstm-hidden", type=int, default=512,
help="Hidden dimension of the LSTM.")
parser.add_argument("--subject-dim", type=int, default=16,
help="Dimension of the subject embedding.")
# Other parameters
parser.add_argument("--meg-init", type=int, default=40,
help="Number of MEG time steps to provide as basal state.")
parser.add_argument("--no-forcings", action="store_false", dest="forcings", default=True,
help="Remove all forcings from the input.")
parser.add_argument("--save-meg", action="store_true",
help="Save full MEG output for each subject.")
return parser