cait_models.py [61:71]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                 Mlp_block=Mlp,init_values=1e-4):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention_block(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



cait_models.py [134:144]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                 Mlp_block=Mlp,init_values=1e-4):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention_block(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



