def __init__()

in patchconvnet_models.py [0:0]


    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block = Learned_Aggregation_Layer, Mlp_block=Mlp,
                 init_values=1e-4):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention_block(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)