def __init__()

in patchconvnet_models.py [0:0]


    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=1, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None,
                 block_layers = Layer_scale_init_Block,
                 block_layers_token = Layer_scale_init_Block_only_token,
                 Patch_layer=ConvStem,act_layer=nn.GELU,
                 Attention_block = Conv_blocks_se ,
                dpr_constant=True,init_scale=1e-4,
                Attention_block_token_only=Learned_Aggregation_Layer,
                Mlp_block_token_only= Mlp,
                depth_token_only=1,
                mlp_ratio_clstk = 3.0,
                multiclass=False):
        super().__init__()

        self.multiclass = multiclass
        self.patch_size = patch_size
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.patch_embed = Patch_layer(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches
        
        if not self.multiclass:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, int(embed_dim)))
        else:
            self.cls_token = nn.Parameter(torch.zeros(1, num_classes, int(embed_dim)))
            
        if not dpr_constant:
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        else:
            dpr = [drop_path_rate for i in range(depth)]
            
        self.blocks = nn.ModuleList([
            block_layers(
                dim=embed_dim, drop_path=dpr[i], norm_layer=norm_layer,
                act_layer=act_layer,Attention_block=Attention_block,init_values=init_scale)
            for i in range(depth)])
                    
        
        self.blocks_token_only = nn.ModuleList([
            block_layers_token(
                dim=int(embed_dim), num_heads=num_heads, mlp_ratio=mlp_ratio_clstk,
                qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=0.0, norm_layer=norm_layer,
                act_layer=act_layer,Attention_block=Attention_block_token_only,
                Mlp_block=Mlp_block_token_only,init_values=init_scale)
            for i in range(depth_token_only)])
        
        self.norm = norm_layer(int(embed_dim))
        
        self.total_len = depth_token_only+depth
        
        self.feature_info = [dict(num_chs=int(embed_dim ), reduction=0, module='head')]
        if not self.multiclass:
            self.head = nn.Linear(int(embed_dim), num_classes) if num_classes > 0 else nn.Identity()
        else:
            self.head = nn.ModuleList([nn.Linear(int(embed_dim), 1)  for _ in range(num_classes)])

        self.rescale = .02

        trunc_normal_(self.cls_token, std=self.rescale)
        self.apply(self._init_weights)