def __init__()

in demucs/demucs.py [0:0]


    def __init__(self,
                 sources,
                 # Channels
                 audio_channels=2,
                 channels=64,
                 growth=2.,
                 # Main structure
                 depth=6,
                 rewrite=True,
                 lstm_layers=0,
                 # Convolutions
                 kernel_size=8,
                 stride=4,
                 context=1,
                 # Activations
                 gelu=True,
                 glu=True,
                 # Normalization
                 norm_starts=4,
                 norm_groups=4,
                 # DConv residual branch
                 dconv_mode=1,
                 dconv_depth=2,
                 dconv_comp=4,
                 dconv_attn=4,
                 dconv_lstm=4,
                 dconv_init=1e-4,
                 # Pre/post processing
                 normalize=True,
                 resample=True,
                 # Weight init
                 rescale=0.1,
                 # Metadata
                 samplerate=44100,
                 segment=4 * 10):
        """
        Args:
            sources (list[str]): list of source names
            audio_channels (int): stereo or mono
            channels (int): first convolution channels
            depth (int): number of encoder/decoder layers
            growth (float): multiply (resp divide) number of channels by that
                for each layer of the encoder (resp decoder)
            depth (int): number of layers in the encoder and in the decoder.
            rewrite (bool): add 1x1 convolution to each layer.
            lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
                by default, as this is now replaced by the smaller and faster small LSTMs
                in the DConv branches.
            kernel_size (int): kernel size for convolutions
            stride (int): stride for convolutions
            context (int): kernel size of the convolution in the
                decoder before the transposed convolution. If > 1,
                will provide some context from neighboring time steps.
            gelu: use GELU activation function.
            glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
            norm_starts: layer at which group norm starts being used.
                decoder layers are numbered in reverse order.
            norm_groups: number of groups for group norm.
            dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
            dconv_depth: depth of residual DConv branch.
            dconv_comp: compression of DConv branch.
            dconv_attn: adds attention layers in DConv branch starting at this layer.
            dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
            dconv_init: initial scale for the DConv branch LayerScale.
            normalize (bool): normalizes the input audio on the fly, and scales back
                the output by the same amount.
            resample (bool): upsample x2 the input and downsample /2 the output.
            rescale (int): rescale initial weights of convolutions
                to get their standard deviation closer to `rescale`.
            samplerate (int): stored as meta information for easing
                future evaluations of the model.
            segment (float): duration of the chunks of audio to ideally evaluate the model on.
                This is used by `demucs.apply.apply_model`.
        """

        super().__init__()
        self.audio_channels = audio_channels
        self.sources = sources
        self.kernel_size = kernel_size
        self.context = context
        self.stride = stride
        self.depth = depth
        self.resample = resample
        self.channels = channels
        self.normalize = normalize
        self.samplerate = samplerate
        self.segment = segment
        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()
        self.skip_scales = nn.ModuleList()

        if glu:
            activation = nn.GLU(dim=1)
            ch_scale = 2
        else:
            activation = nn.ReLU()
            ch_scale = 1
        if gelu:
            act2 = nn.GELU
        else:
            act2 = nn.ReLU

        in_channels = audio_channels
        padding = 0
        for index in range(depth):
            norm_fn = lambda d: nn.Identity()  # noqa
            if index >= norm_starts:
                norm_fn = lambda d: nn.GroupNorm(norm_groups, d)  # noqa

            encode = []
            encode += [
                nn.Conv1d(in_channels, channels, kernel_size, stride),
                norm_fn(channels),
                act2(),
            ]
            attn = index >= dconv_attn
            lstm = index >= dconv_lstm
            if dconv_mode & 1:
                encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
                                 compress=dconv_comp, attn=attn, lstm=lstm)]
            if rewrite:
                encode += [
                    nn.Conv1d(channels, ch_scale * channels, 1),
                    norm_fn(ch_scale * channels), activation]
            self.encoder.append(nn.Sequential(*encode))

            decode = []
            if index > 0:
                out_channels = in_channels
            else:
                out_channels = len(self.sources) * audio_channels
            if rewrite:
                decode += [
                    nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
                    norm_fn(ch_scale * channels), activation]
            if dconv_mode & 2:
                decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
                                 compress=dconv_comp, attn=attn, lstm=lstm)]
            decode += [nn.ConvTranspose1d(channels, out_channels,
                       kernel_size, stride, padding=padding)]
            if index > 0:
                decode += [norm_fn(out_channels), act2()]
            self.decoder.insert(0, nn.Sequential(*decode))
            in_channels = channels
            channels = int(growth * channels)

        channels = in_channels
        if lstm_layers:
            self.lstm = BLSTM(channels, lstm_layers)
        else:
            self.lstm = None

        if rescale:
            rescale_module(self, reference=rescale)